
contributor, has proposed both intensity targets1 and
 total amount target of CE reduction. Early in 2009, the 
State Council announced that China would reduce its 
carbon intensity by 40-45% by 2020 from 2005 levels. 
[1-4]. In 2015, China signed the Paris Agreement with 
125 other countries and set an even more ambitious target 
of reducing emissions by 60-65% by 2030 compared to 
2005 levels and peaking its CE by around 2030. [5] The 
power industry is of vital importance for achieving the 

1 Here, carbon intensity refers to CO2 emissions per unit of 
GDP.

Introduction

In response to climate change, low-carbon 
development has become the consensus of all countries 
around the world. China, as the world’s largest CE 
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above targets, since it consumes approximately 50% of 
China’s coal and emits more than 40% of China’s CO2 
from fossil fuel combustion [6] – more than any other 
sector. And this pattern is unlikely to be changed in the 
near future considering China’s energy structure, which 
is characterized by abundant coal and relatively scarce 
oil and gas resources. Thus, analyzing the space-time 
evolution characteristic of CE and its determinants is of 
great importance not only for the power industry’s low-
carbon transition and sustainable development, but also 
for achieving the national CE reduction targets.

In the literature, various methodologies have been 
utilized to explore the driving factors of CE from the 
electricity sector, which can be classified into two 
categories: decomposition analysis and econometric 
analysis. Nowadays, both the structural decomposition 
analysis (SDA) and index decomposition analysis (IDA) 
have been widely applied to analyze the impact of 
different factors on the change of energy-related CE. 
[7] Specifically, log mean divisia index (LMDI), as 
one of the index decomposition approaches, has gained 
popularity because of its robust theoretical foundations, 
strong adaptability, and perfect decomposition, without 
unexplained residual terms in the results. [8, 9] LMDI 
has also been widely applied to study the influencing 
factors of CE from power generation, examples such as 
[10-12]. 

Decomposition analysis provides a good analytical 
framework for analyzing CE from the power sector. 
However, some important influencing factors, including 
urbanization, environmental regulation, and so on, 
cannot be included in the decomposition. To solve 
this problem, econometric analysis has been paid 
much attention. Based on the STIRPAT model, Li et 
al. (2011) [13] found that China’s CO2 emissions are 
determined by economic growth, industrial structure, 
population size, and the urbanization and technical 
levels. Similarly, Yan et al. (2010) [14] found that it is 
most beneficial to Shanghai’s CO2 emission reduction 
when population and economy maintain moderate speed 
development, urbanization slows down and energy 
savings and emission reduction technologies make great 
progress. Moreover, Zhu et al. (2010) [15] showed that 
the factors influencing the change of total CE in China 
are urbanization rate, population size and residents’ 
consumption level.

A possible shortcoming of the above studies is 
that they are based on independence assumption and 
ignore the spatial interaction effects. [16] According to 
Tobler’s first law of geography [17], all attribute values 
on a geographic surface are related to each other. Thus, 
it is necessary to take the spatial effects into account 
when we study the issue of CO2 emissions. In addition, 
since the power sector is the largest source of CO2 
emissions, it is important and necessary to study the 
spatiotemporal characteristics of CE from the power 
sector and its determinants. Compared with previous 
studies, the contributions of this study are as follows. 
First, the spatial correlation of CE from the power sector 

was examined based on the global Moran’s I index and 
local Moran’s I index, gaining deeper insight into the 
cluster pattern of CE in space. Second, an SDM model 
was estimated to analyze the spatial spillover effects of 
the determinants on CE from the power sector. The rest 
of this paper is organized as follows. After introduction, 
section 2 introduces the methods and data used in this 
study. Section 3 presents the empirical results and 
analyses. Finally, in section 4 we summarize the study 
and provide some suggestions. 

Material and Methods

Global spatial autocorrelation: to test the global 
spatial autocorrelation of China’s provincial power 
CE, the global Moran’s I index is employed, as shown  
in Eq. (1):

 (1)

...where CEi and CEj represent the CE from power 
generation of provinces i and j respectively; n is the 
number of provinces, and Wij stands for the spatial weight 
matrix, which describes the spatial adjacent relations 
between each province. The value of global Moran’s 
I index ranges from -1 to 1. When it lies in the range 
of (-1, 0], the spatial distribution of CE is negatively 
correlated, and the closer to -1 the value is, the stronger 
the negative correlation is. When the value of Moran’s I 
is in the range of (0, 1], the spatial distribution of CE is 
positively correlated, and the closer to 1 the value is, the 
stronger the positive correlation is. If the value equals 0, 
there is no spatial dependence and the power CE exhibits 
a random spatial distribution.

Local spatial autocorrelation: in order to further 
investigate the contribution of a specific province 
to Moran’s I, the local spatial correlation index is 
introduced, specified as Eq. (2):

   (2)

...where Ii is the local spatial autocorrelation index. 
Index Ii describes the spatial clustering degree of CE 
of each province with its neighbors in a certain period. 
If Ii >0, it represents the HH or LL clustering, meaning 
that province i has similar CE in electricity generation 
to its neighboring provinces. However, If Ii<0, it implies 
HL or LH clustering, which means that province  
i is contiguous to neighboring provinces with different 
CE.
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Spatial econometric models. Generally speaking, 
three kinds of spatial econometric models are obtained: 
spatial lag model (SLM), spatial error model (SEM) and 
SDM. SLM is applied to a situation where the economic 
activity of a local region is affected by the economic 
activities of neighboring regions because of the spillover 
effects. SEM, containing interaction effects among the 
error terms, is applied to a situation where the regional 
interaction effects are caused by the omitted variables. 
SDM is a combination of the former two models that 
includes both endogenous interaction effects among 
the dependent variable and interaction effects among 
the error terms. The three models are specified as Eqs.  
(3-5):

           (3)

 (4)

 (5)

...where CE is an n×1 vector of the dependent variable,  
x denotes an n×k matrix of observations; β is an 
associated k×1 vector with unknown parameters  
to be estimated, which reflects the influence of 
the explanatory variables on CE; wCE denotes the 
endogenous interaction effects among CE; φ and wφ 
denote a vector of error terms and the interaction effects 
among the error terms; δ is the spatial autoregressive 
coefficient; and ρ denotes the spatial autocorrelation 
coefficient on the error terms. μi and λt stand for spatial 
fixed effects and time fixed effects, respectively. ε is a 
vector of disturbance terms that are independent and 
identically distributed normal random variables.

Since the estimation of the spatial panel model 
cannot be described as the marginal effect of the 
independent variable on CE, the partial differential 
equation is used to test the direct effect and spillover 
effect of the variable, as shown in Eq. (6):

 (6)

...where In is an n-dimensional identity matrix. The 
indirect effect of province j on province i can be 

interpreted as the average indirect effect of a change 
across all provinces j on CEi. Spatial spillovers are 
measured in this analysis using an indirect effect. The 
coefficient ßk can be interpreted as the direct effect of 
a change in variable k in province i on CEi. Finally, the 
total effect of a change in variable k on CEi is measured 
by the ith row entry in Eq. (6) [18].

Data and Variable

Considering data’s availability and integrity, this 
study takes power sectors in China’s 30 provincial 
administrative regions (except Tibet, Hong Kong, 
Macao and Taiwan) from the year 2003 to 2013 as the 
analysis sample. Since the official data on CE from 
regional power generation are not available in China,  
we use formula (7), which follows the IPCC [19] 
guidelines, to calculate CE from electricity generation 
in province i.

      (7)

...where m is the category of energy2; E denotes the 
quantity of consumption of a certain energy product; 
S refers to the net calorific value of a certain energy 
product; ξ stands for the CE coefficients, η represents the 
carbon oxidation factor, and 44 and 12 are the molecular 
weights of CO2 and carbon, respectively.

Referring to existing studies [20-22], the following 
variables are selected as the driving factors.

Urbanization rate (UR): as an important indicator 
to reflect population structure, urbanization is closely 
related to industrialization and electricity consumption. 
UR is represented by the proportion of urban population 
to the total population and the expected symbol is 
positive.

Per-capita GDP (P-GDP): the environmental Kuznets 
curve (EKC) indicates that economic growth plays an 
important role in CO2 emissions [23]. Several previous 
studies have found that economic activity was the major 
factor responsible for the increase of emissions. This 
study takes per-capita GDP as the proxy of economic 
growth. 

Electricity generation structure (ES): represented 
by the proportion of thermal power production. Similar 
to previous studies, this study assumes that power CE 
mainly comes from thermal power generation. Thus, 
a higher ES generally corresponds to a higher CO2 
emission, and the expected symbol is positive. 

2 This study specifically selected 23 kinds of power production 
consume energy to ensure the accurate calculation of power 
CEs. The 23 kinds of energy include: raw coal, washed coal, 
other coal washing, briquette, gangue, coke, coke oven gas, 
blast furnace gas, converter gas, other coal gas, other cok-
ing products, crude oil, gasoline, diesel, fuel oil, petroleum 
coke, liquefied petroleum gas, dry gas from refineries, other 
petroleum products, natural gas, liquefied natural gas, heat 
and other energy sources.
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Standard coal consumption (MH): an index reflects 
the power generation technology of power plants. A 
lower MH per electricity output means less energy 
needed to generate the same electricity. Conversely, CE 
will be increased. The expected sign is positive.  

Environmental regulation: several studies [24-
25] have investigated the impact of environmental 
regulation on China’s thermal power performance. 
In this study, the regulations are further divided into 
two different categories, i.e., the investment-based 
environmental regulations (EVIN) and fee-based 
environmental regulations (FEE). They are represented 
by the investment in the treatment of industrial pollution 
and the fees levied on wastes discharge at the province 
level, respectively. 

All the related data were collected from China 
Statistical Yearbook, China Energy Statistics Yearbook, 
China Environmental Statistics Yearbook and China 
Power Statistical Yearbook.

Results and Discussion

Spatiotemporal Characteristics

Figs 1 and 2 depict the spatiotemporal characteristics 
of CE from China’s power sector in terms of time 
and space dimension, respectively. As shown in  
Fig. 1, the CE from the power sector increased from 
1.58 billion tons in 2003 to 3.88 billion tons in 2013, 
with an annual growth rate of 9.54%. Regarding the 

ratio of CE from the power sector to the national 
level, it fluctuates frequently within the range of  
40-50%. The year 2011 witnessed the highest value. Due 
to the financial crisis that originated in the United States 
in 2008, China’s economic growth slowed and electricity 
generation decreased, which lead to the power sector CE 
lowering slightly in subsequent years, and this trend 
has been changed since 2010. With the introduction 
of a national “4 trillion investment,” China’s economy 
grew rapidly again and the demand for electricity 
also increased dramatically, which contributes to the 
increases both the total CE and the relative share of CE. 
[26] This situation has changed with the introduction of 
the national 12th Five-Year Plan. China’s power industry 
enhanced the major pollutants governance and emission 
reduction work intensity, as well as implementing the 
project of replacing coal-fired power plants in big cities 
with gas-fired plants, thus the share of CE had a little 
decrease.

Fig. 2 summarized CE from the power sector in 
2003, 2008, and 2013 from the perspective of the 
provincial level. It can be seen that there are big gaps 
among provinces. The provinces in the eastern area, 
such as Shandong, Jiangsu, Guangdong, and Hebei have 
the highest value of CE. In addition, provinces in the 
middle-western area, including Inner Mongolia, Shanxi, 
and Xinjiang, also witnessed large CE, which may be 
highly related to local energy resources. The primary 
energy resources used for electricity generation are not 
evenly distributed across the country, which resulted 
in large parts of electricity being transferred from 

Fig. 1. Line chart of china’s electric power CE (billion tons), 2003-2013.

Fig. 2. Regional power CE (million tons) of 2003, 2008 and 2013.
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economically less developed provinces in the west to 
economic growth centers in the east, while leaving the 
pollution themselves.

 
Spatial Autocorrelation

We use Geoda095i software to measure the global 
Moran’s I index of China’s regional power CE in 
various periods from 2003 to 2013. It can be seen from 
Table 1 that the values of global Moran’s I are positive 
and significant at the 5% level in each period, which 
indicates that there is a strong spatial cluster in China’s 
CE from the power sector. That is to say, provinces 
with similar CE tend to be concentrated geographically. 
Moreover, there is a remarkable fluctuation with the 
upward trend of global Moran’s I index, as well as 
a fluctuation of its significance over time. Moran’s I 
index dropped from 0.358 in 2003 to 0.263 in 2007,  
and increased to 0.289 in 2009. Subsequently, it went 
down to 0.236 in 2012, and finally slightly rebounded 
to 0.247 in 2013. That is to say, the spatial correlation 
of CE in China’s regional power industry presents a 
constantly changing trend. So, the governments should 
strengthen the communication and cooperation among 
different regions in order to achieve common CE 
reduction.

In order to further test the spatial dependence and 
gain deeper insight into the cluster pattern of power CE 
in space, we draw the LISA maps of 2003 and 2013 to 
visually demonstrate the clustering types. As shown in 
Fig. 3, from 2003 onwards, except for a few provinces 
showing a distribution of LH clustering, most provinces 
have significantly positive spatial correlation (HH or 
LL) in the geospatial, and the significance maintains 
stability primarily and then continuously extends. 

Moreover, H-H agglomerations in eastern central China 
have been continuously reduced and then increased in 
varying degrees. The majority of LL agglomeration is 
concentrated in the western region: Xinjiang, Qinghai, 
Sichuan and Yunnan. Overall, a clear east and west 
blocked spatial structure is existed. In other words, 
there is an imbalance in the spatial distribution of CE 
from the power sector.   

Results of the Spatial Dubin Model 

According to Table 2, the LMlag and LMerror 
test statistics of the non-space hybrid panel model are 
8.534 and 23.103, respectively, both of which passed 
1% significance level, indicating that the non-spatial 
is rejected in favor of SAR and/or SEM. Besides, both 
of the LM test and the robust LM test passed 1% and 
5% significance tests under the scenario of considering 
the space-fixed effect, which cannot reject the null 
hypothesis without a space-lagged explanatory variable 
and the null hypothesis without space autocorrelation 
error term, meaning that the space fixed effect model 
should be used. However, the (robust) LM test under 
spatial fixed effects supports adopting SAR or SEM,  
so we further conduct Wald and LR tests to judge 
whether SDM can be simplified to SAR or SEM.  
As shown in Table 3, both the null hypothesis   
H0

1 : θ = 0 and H0
1 : θ + δβ = 0 are rejected at 1% 

significance level. The results indicate that SDM cannot 
be simplified to SAR or SEM. Thus, the SDM with 
fixed effect was selected to analyze the determinants of 
China’s provincial power CE.

Table 3 shows that the direct effect of UR is 
significantly positive at 5% significance level, consistent 
with the expected sign. At present, China is in the 

Fig. 3. LISA clustering maps of China’s provincial power CE: a) 2003, b) 2013.

Table1. Global Moran’s I Index of regional power CE performance and its significance.

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Moran’I 0.358 0.311 0.293 0.263 0.263 0.287 0.289 0.287 0.243 0.236 0.247

P-value 0.002 0.004 0.007 0.012 0.011 0.007 0.007 0.007 0.014 0.017 0.014
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process of accelerated urbanization. [27] The growth 
of urban population will inevitably lead to the increase 
of total electricity consumption. At the same time, the 
improvement of urbanization will also promote the 
development of secondary and tertiary industries, which 
requires a large amount of electricity support, invisibly 
increasing power CE. Therefore, we will focus on 
industrial restructuring while continuing to upgrade the 
urbanization level, expanding the scale of the tertiary 
and light industry in order to achieve the goal of CE 
reduction.

The direct effects of the P-GDP and P-GDP^2 are 
all significant at the 1% level, which means that an 
inverted “U” relationship between power sector CE and 
P-GDP is supported. [24] Faced with the challenge of 
both maintaining economic growth and reducing CE 
from the power sector, it is necessary to readjust the 
mode of economic development and strive to realize 
the decoupling between economic development and CE 
from power sector.

The direct effect of ES is positive at the 1% 
significance level and was the highest among all 
variables. Nowadays, the proportion of thermal power-
generating units in China is more than 70%, and a 
considerable part of the units are small thermal power 
units with relatively low efficiency. A consistent 
reinforcement of restricted market access for new 
facilities as well as phasing-out inferior technologies in 
obsolete facilities is required. [28] Therefore, the small 

and medium power plants with poor efficiency and 
high emissions should be banned. At the same time, it 
is critical to enhance the ratio of renewable energy in 
order to strengthen environmental protection.

The direct effect of MH was positive at the 5% 
significant level. The lower the MH, the higher  
the coal-burning efficiency, and the less carbon dioxide 
emitted by producing the same amount of electrical 
energy. Therefore, reducing the MH is the key to 
effectively reduce the power CE. Actually, the annual 
MH in China is continuously decreased. In addition, 
some advanced generation technologies, such as IGCC 
(integrated coal gasification combined cycle), NGCC 
(natural gas combined cycle), and CCS (carbon capture 
and storage) should be taken as long-term strategies for 
China to promote its CE reduction [29].

The direct effects of EVIN and FEE are significantly 
positive at the 1% level (although Porter hypothesis states 
that appropriate ER can motivate companies to carry out 
more innovative activities, which will be helpful for CE 
reduction). Empirically, a more complicated impact of 
ER on CE is found. In our estimation, the positive effects 
may be related to the direction of the environmental 
regulation. Nowadays, most of the sewage charges are 
mainly used in water pollution control, sewage disposal 
and sulfide dioxide emission reduction, with little effects 
on CE. Thus, adjusting the direction of environmental 
regulation and focusing more on greenhouse gases 
reduction is necessary.

Table 2. Estimation results of traditional pooled panel data model.

Variables No- fixed effects Space- fixed effects Time-fixed effects Space-and-time-fixed 
effects

UR
-0.007937***
(-0.001188)

0.648355***
(4.844782)

-0.761345***
(-4.099934)

0.385264***
(2.883080)

P-GDP  
0.419527  

(0.297216)
-2.917289*
(-1.680285)

0.064598
(0.045264)

-2.968675*
(-1.764575)

P-GDP^2 -0.011871
(-0.162859)

0.181734*
(1.911426)

0.011972
(0.161434)

0.182868**
(1.972653)

ES 0.437998***
(7.132817)

0.657029***
(7.045921)

0.467097***
(7.299704)

0.579254***
(6.423792)

MH -0.222168
(-0.735110)

-0.265843
(-1.220342)

0.099545
(0.268445)

0.675153***
(2.668013)

EVIN 0.200298***
(4.781951)

0.156779***
(6.074599)

0.145237***
(3.109765)

0.085000***
(2.946172)

FEE 0.567226*** 
(16.849949)

0.227789***
(8.274924)

0.592482*** 
(16.839840)

0.173650***
(5.687189)

R2 0.934 0.815 0.937 0.446

loglikols 19.89 183.644 43.965 211.025

LMlag 8.535*** 20.554*** 3.933* 0.045

R-LMlag 1.081 17.636*** 2.609 0.251

LMerror 23.103*** 6.833*** 1.862 0.218

R-LMerror 15.648*** 3.915** 0.537 0.424

Note: ***, **,* indicate 1%, 5% and 10% significance level, respectively.
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The direct effect only reflects the impact of a change 
of variable k in province i on the CE of province i, 
while the spillover effect (indirect effect) is an indicator 
to examine the spatial interaction among the regions. 
It can be seen from Table 3 that the spillover effects 
of UR, P-GDP, P-GDP^2 and FEE are significant, 
indicating that the impact of UR, P-GDP, P-GDP^2  
and FEE in one province will transmit to other 
neighboring provinces and will have a significant effect 
on the power CE of neighboring provinces. The increase 
of UR reduces the space for urban accommodation, and 
some people immigrate to the surrounding provinces, 
leading to the improvement of urbanization in the 
surrounding provinces and the rise of the corresponding 
power CE. With the increase in P-GDP in province i, 
some of the funds and population in the neighboring 
provinces and regions will gather and move toward 
the central provinces. As a result, the cluster flow will 
reduce the population, economic investment and other 
necessary elements for the development of the economy 
in neighboring provinces, and cut down the demand 
for electrical energy and the CE from power sector. 
The improvement of FEE will increase the production 
costs of enterprises and force enterprises in central 
areas to shift production to areas with relatively low 
sewage charges in order to reduce production costs. 
The relocation of production plants has increased the 
demand for electricity in the neighboring provinces 
and indirectly increased the power CE in neighboring 
provinces. 

The spillover effects of ES and MH are not 
significant. Under the condition of the power sector 

without full marketization, it is difficult for a new power 
technology to affect the surrounding regions through 
competition spillover, and the central provinces will 
also be unable to use technology spillovers to drive the 
neighboring provinces and regions to jointly achieve 
carbon emission reduction. Thus, it is necessary to 
accelerate the process of marketization of the power 
industry, and gradually open up the electricity market 
in an orderly manner. At the same time, it is imperative 
to do a good job in national macro-control and avoid 
market-oriented chaos such as malicious competition. 

Although the variable of FEE has a positive spillover 
effect, the spillover effect of EVIN is insignificant. This 
reveals the complicated effects of regulation on CE 
from the power sector. Meanwhile, it also reflects that 
the EVIN is not enough to induce the spillover effects. 
Thus, strengthening the EVIN may be imperative in 
practice.

The direct effects of these explanatory variables are 
different from their coefficients because of the feedback 
effect (feedback effect = elasticity coefficient - direct 
effect). The production of feedback effect is due to the 
fact that its effect on one province’s electricity CE will 
pass to the neighboring provinces, which is then passed 
back to the former. The effect report of UR, P-GDP, 
P-GDP^2, ES, MH, EVIN and FEE are -0.036317, 
10.374898, -0.598287, -0.007069, 0.024923, 0.000368, 
-0.002529, but the impact is very weak. This feedback 
effect respectively comes from the interaction of space 
lag (W*UR, W*P-GDP, W*P-GDP^2, W*ES, W*MH, 
W*EVIN, W*FEE) of seven factors and the space-
lagged explained variable.

Variables Coefficients t value Direct effects t value Indirect effects t value

UR 0.299586** 2.089009 0.335903** 2.410786 1.029765*** 3.991039

P-GDP 5.329717*** -2.860586 -5.045181*** -2.831055 10.107060** 2.704542

P-GDP^2 -0.307333*** 3.040571 0.290954*** 3.003407 -0.571734*** -2.819362

ES 0.598650*** 6.181575 0.605719*** 6.336012 0.221793 1.092741

MH 0.606324** -2.446663 0.581401** -2.393810 0.729276 1.413961

EVIN 0.094040*** 3.314060 0.093672*** 3.375662 0.035542 0.766143

FEE 0.199338*** 6.914797 0.201867*** 6.920450 0.094329* 1.856939

W*UR 0.885665*** 3.721989 R2=0.978

W*P-GDP 9.824386*** 3.005495 Corrected-R2=0.834

W*P-GDP^2 -0.556725*** -3.135597 sigma^2 = 0.019

W*JG 0.126870 0.670242 log-likelihood=203.634

W*MH 0.754725* 1.653114 Wald test spatial lag=20.286***

W*EVIN 0.020051 0.463640 LR test spatial lag=21.232***

W*FEE 0.061496 1.191563 Wald test spatial error= 29.563***

W*dep.var. 0.120975* 1.694028 LR test spatial error= 33.639***

Note: ***, **,* indicate 1%, 5% and 10% significance level, respectively

Table 3. Estimation and test results of the SDM.
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Conclusions and Implications

Overall, the CE from China’s power sector has 
been increasing during the period 2003-2013. Initially, 
it increases at a fixed rate then becomes sluggish, 
subsequently appearing as a sharp increase, and 
finally it tends to be stable. Furthermore, it shows 
significant spatial correlation and spatial agglomeration 
characteristics. The clustering characteristics can be 
depicted as ‘‘higher in the east and lower in the west.” 
Relevant influencing factors have a significant direct 
impact on electricity CE, of which ES has the greatest 
impact. Regarding spillover effects, variables of UR, 
P-GDP and FEE have a significant effect on electrical 
power CE. These results can have several policy 
implications.

First, the Chinese government should speed 
up the marketization reform of the power sector,  
the transmission of electricity from the west to the  
east, the optimization of the CE policy under 
environmental regulations, and the formation of  
a regional complementary mechanism to reduce 
electricity demand pressure in a high-demand area.  
At the same time, there is a need to formulate  
a differential power CE reduction policy according to 
the actual situation of each province. 

Second, optimizing the ES and increasing the 
proportion of non-fossil energy generation will play 
a decisive role in the power CE reduction: (1) It is 
necessary to build more thermal power units with a 
large capacity, high efficiency, low energy consumption 
and low pollution emissions, and gradually force small 
thermal power units out of the market. Meanwhile, 
the government should control the development speed 
of large units and avoid the repeated construction and 
overinvestment of thermal power plants in a certain 
area. (2) Reducing fossil energy consumption of 
thermal power units and improving energy efficiency 
will be an important emission reduction measure in 
the power sector. The government should increase 
investment in manpower and capital for thermal power 
generation technology, make China’s thermal power 
generation technology a world-leading level, optimize 
the utilization rate of coal combustion, and reduce 
power CE. (3) The government should give full play to 
the geographical advantages and local unique resources 
advantages, develop hydroelectricity rationally, utilize 
nuclear electricity safely, utilize wind power electricity 
efficiently and increase the installed capacity of natural 
gas, so as to gradually increase the installed proportion 
of clean energy and control CE by reducing the use of 
coal.

Third, the spatial spillover effect of inter-regional 
power CE should be considered to effectively control 
the power CE through regional common reduction 
activities. The spatial spillover effect is mainly 
guided by the spatial lag of power CE and economic 
development level. Therefore, policymakers need to pay 
attention to the direct and indirect impacts of economic 

development, population structure and environmental 
regulation on electric CE. Adhere to the strategy 
of sustainable economic development and promote 
economic growth mode change from extensive to 
intensive. Effectively changing the economic structure 
and population structure, and optimizing the policy 
of environmental regulation on electricity CE would 
be a win-win solution to the power CE reduction and 
economic growth.

Conflict of Interest

The authors have not declared any conflict of 
interest.

References

1. CHAE Y., HOPE C. Integrated assessment of CO2 and SO2 
policies in North East Asia. Climate Policy. 3 (1), 57, 2003. 

2. FAN W., SUN Y., ZHU T., Wen Y. Emissions of HC, CO, 
NOx , CO2 , and SO2 from civil aviation in China in 2010. 
Atmospheric Environment. 56, 52, 2012.

3. TIAN H., QIU P., CHENG K., GAO J., LU L., LIU K., 
LIU X. Current status and future trends of SO2 and NOx 
pollution during the 12th FYP period in Guiyang city of 
China. Atmospheric Environment. 69, 273, 2013.

4. ZHANG C., LIN Y. Panel estimation for urbanization, 
energy consumption and CO2 emissions: a regional 
analysis in China. Energy Policy. 49, 488, 2012.

5. WANG F., SHACKMAN J., LIU X. Carbon emission 
flow in the power industry and provincial CO2 emissions: 
Evidence from cross-provincial secondary energy trading 
in China. Journal of Cleaner Production. 159, 397, 2017.

6. CHEN Q.X., KANG C.Q., MING H., WANG Z.Y., XIA 
Q., XU, G. X. Assessing the low-carbon effects of inter-
regional energy delivery in China’s electricity sector. 
Renewable and Sustainable Energy Reviews. 32, 671, 2014.

7. PAUL S., BHATTACHARYA R. CO2 emissions from 
energy use in India: a decomposition analysis. Energy 
Policy. 32, 585, 2004.

8. ANG B.W., ZHANG F, CHOI K.H. Factorizing changes 
in energy and environmental indicators through 
decomposition. Energy. 23, 489, 1998.

9. ANG B.W. Decomposition analysis for policymaking in 
energy: which is the preferred method? Energy Policy. 32, 
1131, 2004.

10. MALLA S. CO2 emissions from electricity generation 
in seven Asia-Pacific and North American countries: A 
decomposition analysis. Energy Policy. 37, 1, 2009.

11. ANG B.W., SU B. Carbon emission intensity in electricity 
production: A global analysis. Energy Policy. 94, 56, 2016.

12. ZHANG M., LIU X., WANG W., ZHOU M. Decomposition 
analysis of CO2 emissions from electricity generation in 
China. Energy Policy. 52,159, 2013.

13. LI H.N., MU H.L., ZHANG M., LI N. Analysis on 
influence factors of China’s CO2 emissions based 
on Path-STIRPAT model. Energy Policy. 39, 6906, 2011.

14. YAN H., GUO Y.G., LIN F.C. Analysis of Shanghai 
Urban Development Model under CO2 Control Based on 
STIRPAT Model. Acta Geographica Sinica. 65, 983, 2010.

15. ZHU Q., PENG X.Z., LU Z.M. Analysis model and 
demonstration of the impact of population and consumption 



3927The Spatiotemporal Characteristic of Carbon...

on carbon emissions. China Population Resources and 
Environment. 20, 98, 2010.

16. LONG R.Y., SHAO T.X., CHEN H. Spatial econometric 
analysis of China’s province-level industrial carbon 
productivity and its influencing factors. Applied Energy. 
166, 210, 2016.

17. TOBLER W. A computer movie simulating urban growth 
in the Detroit region. Economic Geography. 46, 234, 1970.  

18. LESAGE J.P. What Regional Scientists Need to Know 
About Spatial Econometrics. Social Science Electronic 
Publishing. 44 (1), 13, 2014.

19. IPCC. Greenhouse Gas Inventory: IPCC Guidelines for 
National Greenhouse Gas Inventories. United Kingdom 
Meteorological Office. Bracknell, England. 1995

20. FAN Y., LIU L.C., WU G., WEI Y.M. Analyzing impact 
factors of CO2 emissions using the STIRPAT model. 
Environmental Impact Assessment Review. 26 (4), 377, 
2006.

21. LI H.N., MU H.L., ZHANG M., LI N. Analysis on 
influence factors of China’s CO2 emissions based 
on Path-STIRPAT model. Energy Policy. 39 (11), 6906, 
2011.

22. SHRESTHA R.M., ANANDARAJAH G., LIYANAGE 
M.H. Factors affecting CO2 emission from the power 
sector of selected countries in Asia and the Pacific. Energy 
Policy. 37, 2375, 2009.

23. HOLTZ-EAKIN D., SELDEN T.M. Stoking the fires? 
CO2 emissions and economic growth. Journal of Public 
Economics. 57, 85, 1995.

24. YANG L. and LIN B. Carbon dioxide-emission in China’s 
power industry: Evidence and policy implications. 
Renewable and Sustainable Energy Reviews. 60, 258, 
2016.

25. ZHAO X., YIN H., ZHAO Y. Impact of environmental 
regulations on the efficiency and CO2 emissions of power 
plants in China. Applied Energy. 149, 238, 2015.

26. ZHOU S.L., SHI M.J., LI N., YUAN Y.N. Effects of 
Chinese Economic Stimulus Package on Economic 
Growth in the Post-Crisis China. Economics Research 
International. 2011.

27. HAN L., GUO J., LIU Z. International Comparison and 
Inspiration on Urbanization: Understanding of the Present 
Stage of Urbanization in China. Urban Development 
Studies. 2014.

28. LIU X.Y., WEN Z.G. Best available techniques and 
pollution control: a case study on China’s thermal power 
industry. Journal of Cleaner Production. 23, 113, 2012.

29. WANG X.P., DU L. Carbon emission performance of 
China’s power industry: Regional disparity and spatial 
analysis. Journal of Industrial Ecology. 21 (5), 1323, 2017.


